相信朋友对SQL Server性能调优相关的知识或多或少都有一些了解。虽然说现在NOSQL相关的技术非常的火热,但是RMDB(关系型数据库)与NOSQL是并存的,并且适用在各种的项目中。在一般的企业级开发中,主要还是RMDB占据主导地位。并且在互联网项目中,也不是摒弃了RMDB,例如MySQL就在很多的互联网应用中发挥着作用。所以,对数据库的调优是个值得深入学习的课题。本系列文章,主要讲述与SQL Server相关的调优知识,希望能够为朋友们带来一些帮助。

本篇提纲如下:

  • 传统SQL Server调优方式的比较

  • 什么是DMV

  • DMV简单示例

  • DMV可以解决哪些问题

传统SQL Server调优方式的比较

我们平时可以采用很多工具对SQL Server的性能进行诊断分析与调优:性能计数器,SQL Server Profiler和Database Engine Tuning Advisor(数据库引擎优化顾问,简称DTA)。下面我们就来对每一个简单的说明一下,并且讲述各自的优缺点。

 

性能计数器

对于使用Windows操作系统的开发朋友,对性能计数器已经不陌生了,最简单的方式就是运行”perfmon”,就可以打开性能监视器的窗口,然后添加对应的计数器,进行监控。如下图所示:

p_w_picpath1.jpg

性能计数器每隔一段时间就回去收集相关的数据,并且我们还可以把这些数据保存起来,便于以后的分析。

优点:使用方便,并且数据收集的比较全面。因为这些操作系统是集成的,不需要额外的花费,就可以直接使用。

缺点:数据不够准确,分析数据成本很高,并且对系统的性能产生影响。因为性能计数器在收集数据的时候,要定时的去抓取系统相关的数据,这样,会对性能造成影响,如果抓取的时间间隔越短,那么对系统的影响就越大。另外,对于收集到的数据,也需要有经验丰富的人去分析数据,并且如果要准确的分析出结果,需要收集大量的数据,人力和时间的成本也高。

SQL Server Profiler

每次谈到SQL Server调优,势必要讲到SQL Server Profiler(为了后续的讲述方便,我们将会把它简称为Profiler)。使用Profiler能够捕获一段时间内SQL执行的每个查询的记录。当数据库服务器上有大量很少运行的查询时,或者有特别的用户查询运行的时候,这个工具很有用。使用Profiler还能捕获到指定时间段内的工作负荷,然后可以在恢复的数据库系统中进行重现。

下面就是一个使用Profiler的界面:

在使用Profiler的时候,在哪里启动Profiler以及将跟踪的数据保存在何处,是一个特别需要考虑的问题。下面,我们就用来对比地看看各种不同的情况。

数据库引擎优化顾问(DTA)

DTA一般需要和Sql Server Profiler结合在一起使用。DTA主要是对Profiler中收集到的数据进行纯数据的综合分析,所以它分析结果的准确性非常依赖于Profiler收集的数据量的多少。Profiler收集的数据越多,那么DTA分析的就越准确,但是这样也对数据库服务器的压力越大,反之。所以,一般不建议在大负载或者生产环境下的数据库服务器上面采用。

如果有需要在大负载,或者生产环境下对数据库的性能进行分析与调优,那如何处理?

这就是我们本次系列文章要讨论的话题。

什么是DMV

使用过SQL Server的朋友,对DMV(Dynamic Management Views,动态管理视图)或多或少都有一些了解或者耳闻。其实DMV就是SQL Server内核的元数据,通过对内部的元数据的分析,我们快速而准确获取很多与SQL Server内部相关的信息,从而进行性能分析。

当查询在SQL Server中运行时,SQL Server会自动的将此次活动的相关信息记录下来,并且保存在内存之中,这些活动信息,就称之为:DMV。

不同类型的DMV信息,有不同的用途,例如,可以相关的DMV来对性能进行诊断,从而提升性能,或对数据库的运行进行监控,或解决故障等。

DMV是以SQL Server实例为级别进行保存的。也就说,如果在服务器上面,安装了一个SQL Server,那么此时这个SQL Server就是一个实例,那么这个实例里面的所有的数据库的DMV都是保存在相同的内存中。当然,我们在使用的时候,可以根据需要只提取更低级别的DMV,例如提取某个数据库的DMV,某个表的DMV,甚至是某个查询的DMV。

因为DMV信息是保存在内存中的,我们不需要额外的操作,只需要将这些信息取出来,按照我们的要求进行运算,统计,分析就够了,获取信息的数据非常快,并且不会对服务器产生压力。另外,因为DMV是SQL Server本身保存的,并且已经做了统计的信息,所以,数据更加的接近于数据库本身的状态。

SQL Server运行的时候越长,DMV中保存的信息就越多(当然,DMV非常小,不会对内存造成压力),利用DMV分析就越准确。这一点和之前的Profiler和DTA是完全不一样的。唯一的一个问题就是:每次SQL Server服务重启,这些保存在内存中的DMV信息就没有了,又是从头开始,慢慢的保存。当然,对于这个问题,我们有很多的解决方案,例如,我们可以定期的将DMV的信息导出,保存在磁盘上。

DMV包含了的信息有很多:索引相关的,查询执行相关的,还有SQL Server OS相关的,Common Language Runtime(CLR)相关的,事务相关,安全相关的,资源管理相关的,数据备份相关的,I/O相关,全文查找相关,数据库镜像相关的,等等信息。所以,我们完全可以使用已经保存在DMV中的信息来进行我们的分析。

因为SQL Server内部的DMV很多,我们本次系类的文章注重在性能分析与调优上,所以,我们主要关注以下几类DMV:索引相关,执行相关,SQL Server OS相关,CLR相关,事务相关,I/O相关,数据库相关。

下面,我们分析一个查询的运行,看看在这个过程中SQL Server都记录了哪些信息(或者说,DMV中保存了什么信息):

  1. 查询的执行计划(即描述了一个查询是如何被执行的)

  2. 什么索引被使用

  3. 什么索引本来应该被用到,但是又没有使用。(因为此时存在缺失索引的性能问题)

  4. I/O的状态(包含逻辑I/O操作和物理的I/O操作)

  5. 查询执行消耗的时间

  6. 查询等待其他资源消耗的时间

  7. 查询在等待什么资源

通过分析这些信息,不仅仅可以使得我们更好的理解查询的是如何工作的,并且还可以让我们思考如何更加合理,高效的使用资源,提高性能。

一般而言,在使用DMV的时候,我们很多时候也需要将其与DMF(Dynamic Management Functions)一起使用。我们可以简单的将DMF理解为SQL Server内部的一系列函数。例如,通过分析sys.dm_exec_query_stats,可以知道查询的相关信息,如果将sys.dm_exec_query_stats里面的sql_handle传给sys.dm_exec_sql_text,那么,我们就可以知道查询的语句的内容。

DMV简单示例

为了使得大家对DMV有更加深入的了解,我们首先来看看一个使用DMV来找出那些查询运行的最慢。(朋友们可能对这里提到的相关的DMV和DMF不太熟悉,没关系,后续文章会介绍)

在SQL Server的查询分析器中,运行一下SQL 语句:

此时,运行的结果如下:

在这个查询中,我们主要是通过将sys.dm_exec_query_stats这个DMV与sys.dm_exec_sql_text和sys.dm_exec_query_plan这两个DMF结合,通过分析查询所消耗的时间,然后按照从高到低进行排序,选出前20个进行展示。

从这个示例中,我们可以知道几点:

  1. 查询DMV时,应该尽可能的将对数据库的影响降到最小。所以,我们在查询的最上面,加上了:SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED。因为每次在运行查询的时候,或多或少的会对数据库产生不同程度的锁定,并且锁定的级别各不一样。通过上面的设置,就告诉SQL Server,接下来的执行的查询将锁定的级别定为:Read Uncommitted。从而将影响减小到最小。

  2. 每次进行性能问题诊断的时候,首先要解决最严重的性能问题。所以,我们此处只是找出前20个运行最慢的查询语句。

  3. 虽然原生的DMV信息提供了很多的信息,但是很多时候需要对DMV进行复杂的统计分析。(这个成本比分析SQL Server Profiler收集到的数据小,也更加简单,准确。)

DMV可以解决哪些问题

看完了上面的简单的例子之后,相信朋友们对DMV有了一个感性的认识,下面,我们就来看看,利用DMV,我们可以解决哪些问题。

故障诊断

诊断就是要识别出问题的所在。有很多的方式和工具可以帮助我们达到这个目的,但是,有了DMV,可能效率会更快:没有什么比分析SQL Server内部的元数据来的更快。

很多时候,对问题的诊断也是性能调优的第一步,搞清楚了问题,才好对症下药。

利用DMV可以诊断出以下问题:最慢的查询语句,常见的等待与阻塞,没有用的索引,大量的I/O操作,利用率最低的执行计划。

正如之前所说,我们可以在不同的级别上面分析问题,例如从整个服务器级别,数据库级别,甚至是某个查询。我们可以通过在获取DMV信息时,设置获取信息的条件来办到。例如,在上一小节的示例中,就是获取整个SQL Server中找出最慢的前20个查询,如果需要,我们完全可以将条件缩小到某个数据库。

很多时候,在识别问题的时候,不是那么容易,仅仅通过一个DMV就搞定了的,需要和DMF结合。甚至要和其他的DMV一起结合分析(在后续文章中,我们会理解的更加深刻)。

诊断出了问题,是一个方面,解决问题也尤为重要。

性能调优

性能调优主要是利用相关的技巧技术之前诊断中出现的问题,从而提升性能。我们后续会详细讲述,这里就不再赘述了。

状态监控

很多的DMV(特别是那些以 sys.dm_exec_开头的)都反映了数据库服务器执行的状态。通过查看这些DMV,我们可以清楚的知道数据库服务器的现在的状态和历史的状态(当然,如何SQL Server服务被重启,那么之前的信息都丢失了,除非定期做了保存)。例如,数据库需要做批处理等长时间的操作,如果其中操作执行超时或运行的非常慢,这个时候,我们就可以查询DMV来分析。如果采用Profiler或者相关的Profiler脚本跟踪,会对数据库服务器的压力相当大。再如,还可以分析数据库中现在有哪些查询在运行,有多少请求在处理,打开多少连接等等,主要是对数据库的操作,都可以通过DMV查询到

原文: